If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16-t^2=4/3
We move all terms to the left:
16-t^2-(4/3)=0
We add all the numbers together, and all the variables
-t^2+16-(+4/3)=0
We add all the numbers together, and all the variables
-1t^2+16-(+4/3)=0
We get rid of parentheses
-1t^2+16-4/3=0
We multiply all the terms by the denominator
-1t^2*3-4+16*3=0
We add all the numbers together, and all the variables
-1t^2*3+44=0
Wy multiply elements
-3t^2+44=0
a = -3; b = 0; c = +44;
Δ = b2-4ac
Δ = 02-4·(-3)·44
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{33}}{2*-3}=\frac{0-4\sqrt{33}}{-6} =-\frac{4\sqrt{33}}{-6} =-\frac{2\sqrt{33}}{-3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{33}}{2*-3}=\frac{0+4\sqrt{33}}{-6} =\frac{4\sqrt{33}}{-6} =\frac{2\sqrt{33}}{-3} $
| 480-30t^2=400 | | -5-6n+6=19 | | (1/3)x+3=15 | | 9c+10=2c-9-9 | | -9+5p-10=10p+6 | | -7f-10=10-9f | | 210t+68=56t+1164 | | -9+3n=-10n+4 | | x+.2x=450 | | 210t-68=56t-1164 | | 5v−1=4v−9 | | 7g-8=5g | | 25x+62=4 | | 2(n-5)+2n=38 | | 0.002(1-x)+0.01(x-3)=1 | | 0.05(2)^n=0 | | 180=110+2x+5x | | x(2x+30)=4400 | | -6=2x+8(x+3) | | 12x+120=348 | | -6=-2x+8(x-3) | | 9k2-24k+16=0 | | -4*(-x+10)=(4x+600)=2 | | (6x-1)=(15x-17) | | (1)/(8)(3d-2)=(1)/(4)(d+5) | | 6x-1=15x-17 | | -3(1+9n)=6(4-4n)+6 | | -3(1+9n=6(4-4n)+6 | | 7x13=(+10) | | 11/(2x)=2 | | -10(-10n+7)+12n=-12(1-5n)-6 | | 2(x-3)+4(7-x)=0 |